
L b

NASA Contractor Report 181825

ICASE REPORT NO. 89-20

ICASE
COMPILING HIGH LEVEL CONSTRUCTS TO

DISTRIBUTED MEMORY ARCHITECTURES

(U S A - C R - 18 1825)
CcrnsTmc~s TO D I E ~ G I E C I E D "XEY
ARCBIIBCIOBBS P i n i l Begort (I C A S L) 12 p

C C B t l L I I Y G 816H LPVBL Yd9-2 4C58

CSCL 09B Unclas
G3/6 1 020S82U

Piyush Mehrotra

John Van Rosendale

Contract N o . NAS1-18605
March 1989

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

Lsngley Research Center
Hampton, Vlrginia 23665

Recently, ICASE has begun differentiating between reports with a mathemat-
ical or applied science theme and reports whose main emphasis is some aspect of
computer science by producing the computer science reports with a yellow cover.
The blue cover reports will now emphasize mathematical research. In all other
aspects the reports will remain the same; in particular, they will continue to be
submitted to the appropriate journals or conferences for formal publication.

i

Compiling High Level Constructs to
Distributed Memory Architectures?

Piyush MehrotraS, John Van Rosendale

Institute for Computer Applications in Science and Engineering

Abstract
Current languages for nonshared memory architectures provide a relatively low-level program-
ming environment. In this paper we describe a set of language primitives which allow the
programmer to express data-parallel algorithms at a higher level, while also permitting control
over those aspects of the program critical to performance, such as load balance and data distri-
bution. Given such a program specification, the compiler automatically generates a distributed
program containing send and receive constructs to perform interprocess communication.

This research was supported in part by the National Aeronautics and Space Administration under NASA
contract NAS1-18605, Institute of Defense Analysis under contract IDA 10-00008, and Office of Naval Research
under contract ONR N00014-88-M-0108 while the authors were in residence at ICASE, NASA Langley
Research Center, Hampton, VA 23665.

* On leave from Dept. of Computer Science, Purdue University, West Lafayette, IN 47906.

. .
iii PRECEDING PAGE BLANK NOT FILMA)

1. Introduction
Nonshared memory architectures are currently programmed using message-passing

languages, such as CSP[2] and Occam[6], in which the programmer defines a system of
interacting "tasks" or "processes," which communicate through exchange of messages. These
languages allow the user to fully control and exploit the underlying hardware, and are well
suited to some classes of algorithms, such as game tree searching and discrete event
simulation, where the algorithm decomposes naturally into a system of cooperating processes.
However, for algorithms relying on synchronous manipulation of distributed data structures, as
is typical in numerical computation, such languages have proven awkward. The problem is
that the "abstractions" in which the programmer tends to think, for example, distributed
arrays, are not well represented in the language.

In our approach, data parallel algorithms are specified as parallel loops acting on
distributed data structures. The distribution of these data structures and the allocation of work
to processors are separately specified. The compiler then maps this high-level specification
into an interacting system of tasks, which communicate via message-passing.

The goal here is to allow the user to specify the algorithm at the highest possible level.
At the same time, we wish to make the user explicitly aware of data distribution, load
balancing, and communication costs, since these issues critically effect performance on
nonshared memory architectures. The many small details involved in message exchange and
synchronization are relegated to the compiler. With these choices, the programmer is free to
focus on high-level algorithm design and performance issues, while relegating the minor but
complex details of interprocessor communication to the compiler and run-time environment.

2. Language Primitives
The goal of our approach is to allow the programmers to treat distributed data structures

as single objects. In our approach, the programmer must specify three things: a) the processor
topology on which the program is to be executed, b) the distribution of the data structures
across these processors, and c) the parallel loops and where they are to be executed. The
following subsections describe each of these kinds of specification.

Processor Arrays
The first thing that needs to be specified is a "processor-array." This is an array of

physical processors across which the data structures will be distributed, and on which the
algorithm will execute. Such a specification has the form:

int np in 1 .. 8
procs P[np, npl

These statements allocate a square array P of np processors, where np is an integer constant
between I and 8, dynamically chosen by the run-time system.

2

This construct provides a "real estate agent," as suggested by C. Seitz. Allowing the size
of the processor array to be dynamically chosen is important here, since it provides
portability, and avoids dead-lock in case a smaller than expected number of processors is
available. The basic assumption here is that the underlying architecture can support multi-
dimensional arrays of physical processor, an assumption natural for hypercubes and mesh
connected architectures.

Data Distribution Primitives
Given a processor array, the programmer must specify the distribution of data structures

across that processor array. The current version of our system supports only distributed
arrays; other distributed data structures will be allowed in future versions.

Array distributions are specified by a distribution clause in their declaration. This clause
specifies a sequence of distribution patterns, one for each dimension of the array. Scalar
variables and arrays without a distribution clause are simply replicated, with one copy
assigned to each of the processors in the processor array.

Each dimension of a data array can be distributed across the processors in one of several
patterns, or can be left undistributed. The currently supported distribution patterns are block
and cyclic. With a block distribution, each processor receives a contiguous block of elements
of the array. Conversely, with a cyclic distribution, the array elements are distributed in a
round-robin fashion across the processors. The number of dimensions of an array that are
distributed must match the number of dimensions of the underlying processor array. Hyphens
are used to indicate dimensions of data arrays which are not distributed.

Forall Loops
Operations on distributed data structures are specified by forall loops. The forall loop

here is similar to that in BLAZE [5] . The example below shows a loop which performs 63
loop invocations, shifting the values in the array A one space to the left.

forall i in 1 : 63 on P(A[i]) loop
. . .
A[i] := A[i+l]
. . .

end
The semantics here are "copy-in copy-out," in the sense that the values on the right hand side
of the assignment are the old values in array A, before being modified by the loop. Thus the
array A is effectively, "copied into" each invocation of the forall loop, and then the changes
are "copied out."

In addition to the range specification in the header of the forall, there is also an on
clause. This clause specifies the processor on which each loop invocation is to be executed.
In the above program fragment, the on clause causes the ith loop invocation to be executed on
the processor owning the ith element of the array A.

3

Given these primitives, a programmer can specify a data parallel algorithm at a high
level, while still retaining control over those details critical to performance. As an example,
the code fragment in Figure 1. performs a "smoothing" iteration on an array X, in which the
new value of each element of X is an average of the values of its four neighbors. Note that
the body of the forall loop is independent of the distribution of the array X, and of the
processor array P. Thus a variety of distribution patterns could easily be tried by trivial
modification of this program.

3. Structure of the Generated Code
Using the language primitives described in the last section, the user can provide a high

level specification of the parallel algorithm. The compiler parses and analyzes the source
code to produce a set of concurrently executing processes. The generated code runs in what
has been termed the SPMD (Single Program Multiple Data) mode. That is, the same process
code is down loaded onto each of the processors of the target architecture. The processes
then execute asynchronously, interacting with each other via message-passing.

There are two major issues in restructuring the source code for parallel execution. First,
the forall loops have to be partitioned among the processes, as specified by the on clauses in
the loop header. Second, all remote accesses have to be "compiled" into message passing
communication.

The first issue is straight forward. In the literature on restructuring compilers it is known
as strip-mining or Joop-chunking, and is a standard technique [l, 71. The second issue is
more subtle. All references to distributed data structures have to be analyzed, to identify
potentially nonlocal accesses, and then converted into appropriate message passing

int np in 1 .. 4
pro= Wnp, npl

real X[O..N+l, O..N+l] dist [block,block]

for k in 1 : 50 loop

forall (ij) in (1 : N, 1 : N) on P(X[i, j]) loop

X[ij] := 0.25*(X[i+lj] + X[i-lj] + X[ij+

end
end

3 + X[ij-l

Figure 1: Smoothing Iteration

4

communication. The rest of this paper will focus on this second issue.

4. Induced Communication
Whether an array reference is local or not depends on the array distribution pattern, on

the on clause in the forall loop header, and on the way the array elements are accessed. In
some cases, the compiler has enough information to specify exactly where data values should
be "mailed" in order that all loop invocations have the information they need before their

Figure 2: Irregular Triangular Grid

5

execution begins. This is the case for the smoothing iteration given in Figure 1. For each
array reference, the compiler can determine which process owns the array element and which
processes will need it in their loop invocations. It can then generate "optimal" message
passing code.

In many cases the compiler does not have enough information to determine, at compile
time, where to mail data in order to allow the forall loop invocations to execute without
access to nonlocal data. This situation arises, for example, with irregular grids, such as that
shown in Figure 2. Here the array accesses depend on an indexing function computed at
run-time. In such situations, the compiler has to generate "fetches" to retrieve nonlocal data.
The process requiring the data will send a request message to the process owning the data,
which will mail the requested value back to the requesting process. The run-time code
needed to carry this out is relatively complex, but fortunately can be done in an efficient
manner by pulling all "fetches" out of the forall loop itself.

Consider the problem of performing a "smoothing" iteration on an irregular grid. Figure
2. shows an irregular grid for aerodynamics calculations, generated by D. Mavripilis [4]. For
this grid, the smoothing iteration would be more complex, as shown in Figure 3.

Here, the values at the N nodes in the grid are represented as a one-dimensional array of
values, value. Each node has a maximum of MAX-NBRS neighbors. The number of
neighbors of each mesh point is stored in the vector n-nbrs, and the indices of these
neighbors are stored in the two-dimensional array nbrs.

real value[N], w[N, MAX-NBRS] dist ...
int n-nbrs[N], nbrs[N, MAX-NBRS] dist ...

nbrs := ... 5% generate grid

while not done loop

forall i in 1 : N on P(value[i]) loop

for k in 1 : n-nbrs[i] loop

value[i] := value[i] + w[i, k]*value[nbrs[i, k]]

end
end

end
Figure 3: Smoothing iteration on irregular grid

6

We suppose that the grid is generated on the fly by some algorithm. The values in the
array nbrs are set at run-time, as indicated. The distributions of the arrays are not shown.
Proper distribution of the arrays in this case raises load balancing issues outside the scope of
this paper. The forall loop ranges over the mesh points in the grid. The new value at each
mesh point is computed by the inner for loop, and is a weighted sum of the values at the
mesh point's immediate neighbors.

The important point here is that in the forall loop, the elements of the vector value are
indexed by the array nbrs. Thus the compiler cannot determine which elements will be
accessed, and has to generate remote "fetches". A high-level pseudo-code version of the
generated code is presented in Figure 4. The first time through the loop, each process
determines which nonlocal values it needs, and sends a "fetch request" to the owning process
of each nonlocal value it needs. While waiting for its requests to be answered, the process
services requests that it receives from other processes. When it has received all its required
data, the process increments a global counter signaling that it-is done. It then continues
servicing fetch requests from other processes until all processes have signaled receipt of their
fetch requests. The global synchronization is required, since a priori knowledge of the
number of fetch request each process will receive is not available.

During this first time through the loop, each process can keep track of the fetch requests
it fulfills. This information can then be used in subsequent trips through the loop, to directly
send the data where it is needed, without performing any fetchs. Thus the overhead of the
fetch requests and the global synchronization is incurred only the first time through the loop.
In general, a large number of smoothing iterations are required, so the overhead of servicing
these fetch requests the first time through the forall loop should be relatively minor.

More Complex Examples
In the irregular grids example presented above, the run-time system can easily determine

the remote data needed by each process, before loop execution begins. This is possible, since
neither of the arrays n-nbrs and nbrs is modified in the forall loop body. Thus it is easy for
the compiler to analyze and restructure the program so that all nonlocal accesses are done
ahead of the loop.

In more complex situations, this may not be possible. Consider the case where the
locality of each reference is intimately tied to the computation within the forall loop. In such
situations, the fetches of remote data cannot be extracted from the body and must remain
embedded within it. To handle these cases, one would have to set up the "threads" on each
processor to service remote requests, in effect simulating shared memory on a nonshared
memory architecture. The performance penalty in doing this would be severe.

Our current system handles cases like the irregular grid example here, and somewhat
more complexes cases as well. Its main limitation is that the only control constructs allowed
in forall loops are branching constructs, and for loops whose limits are set outside the forall
loop. In particular, while loops are not allowed inside forall loops. Our goal at the moment
is to demonstrate the efficacy of this approach in cases where we can guarantee good
performance. Extending this approach to more difficult case, such as that of while loops

7

On each processor.

i

I

- first time through while loop

communication phase
- send remote fetch requests for all remote

- service fetch requests for other processors

- continue to service (potential) fetch requests

values needed on this processor

and receive requested data

until all processors have received their requested data

computation phase
- execute "strip-mined" loop

- subsequent times through while loop

communication phase
- send data needed by other processors
- receive needed data from other processor

computation phase
- execute "strip-mined" loop

Figure 4: Code generated for irregular gr ih example

within forall loops, is a subject for future research.

5. Conclusion
In this paper, we have presented a set of language primitives for nonshared memory

architectures. These primitives allow specification of programs at a higher level than is
possible with current message-passing languages. The programmer must still explicitly
manage data distribution and load balancing, since these issues are critical to performance and
cannot be automated with current compiler technology. However, the minor details of process
management and of interprocessor communication and synchronization are relegated to the
compiler, greatly reducing the burden on the programmer.

One of the principal advantages of this approach is that it allows the algorithm to be
designed and specified in a distribution independent manner. Specifying the algorithm and
data distribution separately simplifies programming, enhances portability, and permits easy

8

"tuning" of programs, by allowing experimentation with a variety of data distributions and
load balancing strategies, through minor changes in the program.

A preliminary version of these languages primitives is currently under development at
Purdue University. Though we do not yet have performance statistics, in simple cases, such
as those considered in this paper, the message passing code our system produces is virtually
identical to that produced by experienced programmers, so will achieve the same performance.

References
1.

2.

3.

4.

5.

6.

7.

Allen, J. R., "Dependence Analysis for Subscripted Variables and Its Application to
Program Transformations," PhD Thesis, Rice University, Houston TX, Apr., 1983.
Hoare C. A. R., "Communicating Sequential Processes," Communications of the ACM,

Koelbel, C., P. Mehrotra, and J. Van Rosendale, "Semi-automatic Process Partitioning for
Parallel Computation," International Journal of Parallel Programming, 16(5), pp 366-382,
1987.
Mavripilis, D. J., "Adaptive Mesh Generation for Viscous Flows using Delaunay
Triangulation," ICASE Report No. 88-47, (submitted to J. Comp. Physics), 1988.
Mehrotra, P. and J. Van Rosendale, "The BLAZE Language: A Parallel Language For
Scientific Programs," Parallel Computing, 5(3), pp. 339-361, Nov., 1987.
Pountain, D. "A Tutorial Introduction to Occam Programming," Inmos, Colorado
Springs, Co., 1986.
Wolfe, M. J., "Optimizing Supercompilers for Supercomputers," PhD Thesis, University of
Illinois, Urbana, IL, Oct., 1982.

21(8), pp 666-677, Aug., 1978.

Report Documentation Page
1. Report No. 2. Government Accession No.

NASA CR-181825
ICASE Report N o . 89-20

COMPILING HIGH LEVEL CONSTRUCTS TO
DISTRIBUTED MEMORY ARCHITECTURES

4. Title and Subtitle

7. Authork)
Piyush Mehrotra
John Van Rosendale

3. Recipient's Catalog No.

5. Report Date
March 1989

6. Performing Organization Code

8. Performing Organization Report No.
89-20

I n s t i t u t e f o r Computer Applicat ions i n Science

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

Nat ional Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

and Engineering

12. Sponsoring Agency Name and Address

11. Contract or Grant No.
NAS1-18605

13. Type of Report and Period Covered

Contractor Report
14. Sponsoring bgency Code

I I I I

NASA FORM 1626 OCT 86
NASA-Langley, 1989

9. Performing Organization Name and Address

15. Supplementary Notes
Langley Technical Monitor: Proceedings of Hypercube
Richard W. Barnwell Mult iprocessors 1989

Fina l Report

16. Abstract
Current languages f o r nonshared memory a r c h i t e c t u r e s provide a r e l a t i v e low-

l e v e l programming environment. In t h i s paper w e descr ibe a s e t of p r imi t ives
which al low the programmer t o express da ta -para l le l a lgor i thms a t a higher l e v e l ,
while a l s o permi t t ing cont ro l over those a s p e c t s of the program c r i t i c a l t o
performance, such a s load balance and da ta d i s t r i b u t i o n . Given such a program
spec i f i c a t i o n , the compiler automa ti c a l l y genera tes a d i s t r i b u t e d program
conta in ing send and receive cons t ruc t s t o perform i n t e r p r o c e s s communication.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

programming languages,
nonshared memory a r c h i t e c t u r e s Software

61 - Computer Programming

Unclass i f ied - Unlimited

19. Security Classif. (of this report)
Unclas s i f i ed

20. Security Classif. (of this pagel
Uncl as s i f i e d 12

